Extensions 1→N→G→Q→1 with N=C2 and Q=C22×C9⋊S3

Direct product G=N×Q with N=C2 and Q=C22×C9⋊S3
dρLabelID
C23×C9⋊S3216C2^3xC9:S3432,560


Non-split extensions G=N.Q with N=C2 and Q=C22×C9⋊S3
extensionφ:Q→Aut NdρLabelID
C2.1(C22×C9⋊S3) = C2×C4×C9⋊S3central extension (φ=1)216C2.1(C2^2xC9:S3)432,381
C2.2(C22×C9⋊S3) = C22×C9⋊Dic3central extension (φ=1)432C2.2(C2^2xC9:S3)432,396
C2.3(C22×C9⋊S3) = C2×C12.D9central stem extension (φ=1)432C2.3(C2^2xC9:S3)432,380
C2.4(C22×C9⋊S3) = C2×C36⋊S3central stem extension (φ=1)216C2.4(C2^2xC9:S3)432,382
C2.5(C22×C9⋊S3) = C36.70D6central stem extension (φ=1)216C2.5(C2^2xC9:S3)432,383
C2.6(C22×C9⋊S3) = D4×C9⋊S3central stem extension (φ=1)108C2.6(C2^2xC9:S3)432,388
C2.7(C22×C9⋊S3) = C36.27D6central stem extension (φ=1)216C2.7(C2^2xC9:S3)432,389
C2.8(C22×C9⋊S3) = Q8×C9⋊S3central stem extension (φ=1)216C2.8(C2^2xC9:S3)432,392
C2.9(C22×C9⋊S3) = C36.29D6central stem extension (φ=1)216C2.9(C2^2xC9:S3)432,393
C2.10(C22×C9⋊S3) = C2×C6.D18central stem extension (φ=1)216C2.10(C2^2xC9:S3)432,397

׿
×
𝔽